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Why study Low-Temperature Oxidation
(LTO) chemistry?

} A fascinating subject of scientific interest for many years certainly because it
describes intriguing experimental features

Autoignition

First rapid compression machines built in 1906 (G. Falk, JACS, 1906907)
G. Vanhove RCM, Workshop, 2012

0ln order to heat the gas whosjE ‘il
was to be determined, !

it was necessary to enclose

it in a small vessel supplied
with a device for allowing the gas to be |
compressed instantaneous|

To cause adiabatic compression, a weight of 25 kg was dropped
on the piston from heights 0f48 to 86 cm.




Why study LTO chemistry?

} A fascinating subject of scientific interest for more than 100 years
which describes intriguing experimental features

Cool flames
First observed in 1817 by SiHumphry Davy

J. Griffiths, New Scientist, 2004
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FIG. 4 —Pressure/composition limits for single and multiple cool flames in ethane - oxygen
mixtures at 330° C,

J.A. Knox and G.W. Norrish, Trans. Farad. Soc., 1954
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Why study LTO chemistry?

A fascinating subject of scientific interest for about100 years
which describes intriguing experimental features

Negative temperature coefficient (NTC)
First mentioned in 1929 (R.N. Pease, JACS)
Measurements in static reactors

Influence of lemperature on the vate of reaction of @ C,Hy + Oy medium,
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D.M. Newitt and L.S. Thornes , J. Chem. Soc., 1937
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FiG. 1.—Rate of slow oxidation of equimolecular ethane + oxygen mixtures at different
temperatures in a 5 cm diam. Pyrex reaction vessel.
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J.A. Knox and G.W. Norrish, Trans. Farad. Soc., 1954



Why study LTO chemistry?

Knocking !

} A subject in i
: Sl engines, ,
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Why study LTO chemistry?

} A subject with important practical applications:

How LTO kinetics can influence engine performances

S. Som, M.J. Davis et al., J. Phys. Chem. Letters, 2013

HE, + 5= My 05 05 CFD predicted spatial temperature distribution
A in a diesel engine fed by a
o n-heptane/ methyl butanoate mix. (869 reactions)
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Many detailed kinetic models of LTO

+ Autoignition of fuel representative of gasoline
available since the end of the 90s

Autoignition of n-heptane
in a shock tube (Aachen) and a rapid compression machine (Lille)

Symbols correspond to experiments and lines to simulations ( f=1,P from3to42bar )
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E.Ranzi, P. Dagaut et al. F. Buda, P.A. Glaude, V. Warth,
H.J. Curran, C.K. Westbrook et al. Combust. Elame 1995 F. Battin - Leclerc et al.
Combust. Flame 199 8 ' Combust. Flame 2005
550 species and 2450 reactions 100 species and 2000 reactions 360 species and 1820 reactions

Automatic generation

Models lead to similar agreement
for reproducing the available experimental results,
but with very different LTO kinetics




Many detailed kinetic models-of LLTO

} Model validation for product formation often
using jet- stirred reactor (JSR) data

O. Herbinet and G. Dayma .,
chapter 8,
in Cleaner Combustion;
Battin - Leclerc, F.; Simmie,
J. M.; Blurock , E., Eds.;

Green Energy
and Technology;
Springer London, 2013

Perfect material mixing

if based on the design
of D. Matras and J. Villermaux
Chem Eng Sci 1973 Nancy

Orléans
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Thermal homogeneity
if preceeding by a preheating zone
and used with high dilution
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Many detailed kinetic models of LTO

} Models can predict JSR major product
formatlon Oxidation of 2 - methylheptane

Symbols correspond to experiments and lines to simulations
(f =1, P=10bar, t =0.7s, 0.1% initial fuel, GC measurements )

NTC

S.M. Sarathy, C.K.Westbrook,
P. Dagaut et al.
Combust. Flame 2011
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